erf, erff, erfl
From cppreference.com
                    
                                        
                    
                    
                                                            
                    | Defined in header  <math.h> | ||
| float       erff( float arg ); | (1) | (since C99) | 
| double      erf( double arg ); | (2) | (since C99) | 
| long double erfl( long double arg ); | (3) | (since C99) | 
| Defined in header  <tgmath.h> | ||
| #define erf( arg ) | (4) | (since C99) | 
4) Type-generic macro: If 
arg has type long double, erfl is called. Otherwise, if arg has integer type or the type double, erf is called. Otherwise, erff is called.| Contents | 
[edit] Parameters
| arg | - | floating point value | 
[edit] Return value
If no errors occur, value of the error function ofarg, that is | 2 | 
| √π | 
0e-t2
dt, is returned. If a range error occurs due to underflow, the correct result (after rounding), that is
| 2*arg | 
| √π | 
[edit] Error handling
Errors are reported as specified in math_errhandling
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If the argument is ±0, ±0 is returned
- If the argument is ±∞, ±1 is returned
- If the argument is NaN, NaN is returned
[edit] Notes
Underflow is guaranteed if |arg| < DBL_MIN*(sqrt(π)/2)
erf(| x | 
| σ√2 | 
[edit] Example
Run this code
#include <stdio.h> #include <math.h> double phi(double x1, double x2) { return (erf(x2/sqrt(2)) - erf(x1/sqrt(2)))/2; } int main(void) { puts("normal variate probabilities:"); for(int n=-4; n<4; ++n) printf("[%2d:%2d]: %5.2f%%\n", n, n+1, 100*phi(n, n+1)); puts("special values:"); printf("erf(-0) = %f\n", erf(-0.0)); printf("erf(Inf) = %f\n", erf(INFINITY)); }
Output:
normal variate probabilities: [-4:-3]: 0.13% [-3:-2]: 2.14% [-2:-1]: 13.59% [-1: 0]: 34.13% [ 0: 1]: 34.13% [ 1: 2]: 13.59% [ 2: 3]: 2.14% [ 3: 4]: 0.13% special values: erf(-0) = -0.000000 erf(Inf) = 1.000000
[edit] See also
| (C99)(C99)(C99) | computes complementary error function (function) | 
| 
C++ documentation for erf
 | |
[edit] External links
Weisstein, Eric W. "Erf." From MathWorld--A Wolfram Web Resource.