public class Semaphore extends Object implements Serializable
acquire()
blocks if necessary until a permit is
available, and then takes it. Each release()
adds a permit,
potentially releasing a blocking acquirer.
However, no actual permit objects are used; the Semaphore
just
keeps a count of the number available and acts accordingly.
Semaphores are often used to restrict the number of threads than can access some (physical or logical) resource. For example, here is a class that uses a semaphore to control access to a pool of items:
class Pool {
private static final int MAX_AVAILABLE = 100;
private final Semaphore available = new Semaphore(MAX_AVAILABLE, true);
public Object getItem() throws InterruptedException {
available.acquire();
return getNextAvailableItem();
}
public void putItem(Object x) {
if (markAsUnused(x))
available.release();
}
// Not a particularly efficient data structure; just for demo
protected Object[] items = ... whatever kinds of items being managed
protected boolean[] used = new boolean[MAX_AVAILABLE];
protected synchronized Object getNextAvailableItem() {
for (int i = 0; i < MAX_AVAILABLE; ++i) {
if (!used[i]) {
used[i] = true;
return items[i];
}
}
return null; // not reached
}
protected synchronized boolean markAsUnused(Object item) {
for (int i = 0; i < MAX_AVAILABLE; ++i) {
if (item == items[i]) {
if (used[i]) {
used[i] = false;
return true;
} else
return false;
}
}
return false;
}
}
Before obtaining an item each thread must acquire a permit from
the semaphore, guaranteeing that an item is available for use. When
the thread has finished with the item it is returned back to the
pool and a permit is returned to the semaphore, allowing another
thread to acquire that item. Note that no synchronization lock is
held when acquire()
is called as that would prevent an item
from being returned to the pool. The semaphore encapsulates the
synchronization needed to restrict access to the pool, separately
from any synchronization needed to maintain the consistency of the
pool itself.
A semaphore initialized to one, and which is used such that it
only has at most one permit available, can serve as a mutual
exclusion lock. This is more commonly known as a binary
semaphore, because it only has two states: one permit
available, or zero permits available. When used in this way, the
binary semaphore has the property (unlike many Lock
implementations), that the "lock" can be released by a
thread other than the owner (as semaphores have no notion of
ownership). This can be useful in some specialized contexts, such
as deadlock recovery.
The constructor for this class optionally accepts a
fairness parameter. When set false, this class makes no
guarantees about the order in which threads acquire permits. In
particular, barging is permitted, that is, a thread
invoking acquire()
can be allocated a permit ahead of a
thread that has been waiting - logically the new thread places itself at
the head of the queue of waiting threads. When fairness is set true, the
semaphore guarantees that threads invoking any of the acquire
methods are selected to obtain permits in the order in
which their invocation of those methods was processed
(first-in-first-out; FIFO). Note that FIFO ordering necessarily
applies to specific internal points of execution within these
methods. So, it is possible for one thread to invoke
acquire
before another, but reach the ordering point after
the other, and similarly upon return from the method.
Also note that the untimed tryAcquire
methods do not
honor the fairness setting, but will take any permits that are
available.
Generally, semaphores used to control resource access should be initialized as fair, to ensure that no thread is starved out from accessing a resource. When using semaphores for other kinds of synchronization control, the throughput advantages of non-fair ordering often outweigh fairness considerations.
This class also provides convenience methods to acquire
and release
multiple
permits at a time. Beware of the increased risk of indefinite
postponement when these methods are used without fairness set true.
Memory consistency effects: Actions in a thread prior to calling
a "release" method such as release()
happen-before
actions following a successful "acquire" method such as acquire()
in another thread.
Constructor and Description |
---|
Semaphore(int permits)
Creates a
Semaphore with the given number of
permits and nonfair fairness setting. |
Semaphore(int permits,
boolean fair)
Creates a
Semaphore with the given number of
permits and the given fairness setting. |
Modifier and Type | Method and Description |
---|---|
void |
acquire()
Acquires a permit from this semaphore, blocking until one is
available, or the thread is interrupted.
|
void |
acquire(int permits)
Acquires the given number of permits from this semaphore,
blocking until all are available,
or the thread is interrupted.
|
void |
acquireUninterruptibly()
Acquires a permit from this semaphore, blocking until one is
available.
|
void |
acquireUninterruptibly(int permits)
Acquires the given number of permits from this semaphore,
blocking until all are available.
|
int |
availablePermits()
Returns the current number of permits available in this semaphore.
|
int |
drainPermits()
Acquires and returns all permits that are immediately available.
|
protected Collection<Thread> |
getQueuedThreads()
Returns a collection containing threads that may be waiting to acquire.
|
int |
getQueueLength()
Returns an estimate of the number of threads waiting to acquire.
|
boolean |
hasQueuedThreads()
Queries whether any threads are waiting to acquire.
|
boolean |
isFair()
Returns
true if this semaphore has fairness set true. |
protected void |
reducePermits(int reduction)
Shrinks the number of available permits by the indicated
reduction.
|
void |
release()
Releases a permit, returning it to the semaphore.
|
void |
release(int permits)
Releases the given number of permits, returning them to the semaphore.
|
String |
toString()
Returns a string identifying this semaphore, as well as its state.
|
boolean |
tryAcquire()
Acquires a permit from this semaphore, only if one is available at the
time of invocation.
|
boolean |
tryAcquire(int permits)
Acquires the given number of permits from this semaphore, only
if all are available at the time of invocation.
|
boolean |
tryAcquire(int permits,
long timeout,
TimeUnit unit)
Acquires the given number of permits from this semaphore, if all
become available within the given waiting time and the current
thread has not been interrupted.
|
boolean |
tryAcquire(long timeout,
TimeUnit unit)
Acquires a permit from this semaphore, if one becomes available
within the given waiting time and the current thread has not
been interrupted.
|
public Semaphore(int permits)
Semaphore
with the given number of
permits and nonfair fairness setting.permits
- the initial number of permits available.
This value may be negative, in which case releases
must occur before any acquires will be granted.public Semaphore(int permits, boolean fair)
Semaphore
with the given number of
permits and the given fairness setting.permits
- the initial number of permits available.
This value may be negative, in which case releases
must occur before any acquires will be granted.fair
- true
if this semaphore will guarantee
first-in first-out granting of permits under contention,
else false
public void acquire() throws InterruptedException
Acquires a permit, if one is available and returns immediately, reducing the number of available permits by one.
If no permit is available then the current thread becomes disabled for thread scheduling purposes and lies dormant until one of two things happens:
release()
method for this
semaphore and the current thread is next to be assigned a permit; or
If the current thread:
InterruptedException
is thrown and the current thread's
interrupted status is cleared.InterruptedException
- if the current thread is interruptedpublic void acquireUninterruptibly()
Acquires a permit, if one is available and returns immediately, reducing the number of available permits by one.
If no permit is available then the current thread becomes
disabled for thread scheduling purposes and lies dormant until
some other thread invokes the release()
method for this
semaphore and the current thread is next to be assigned a permit.
If the current thread is interrupted while waiting for a permit then it will continue to wait, but the time at which the thread is assigned a permit may change compared to the time it would have received the permit had no interruption occurred. When the thread does return from this method its interrupt status will be set.
public boolean tryAcquire()
Acquires a permit, if one is available and returns immediately,
with the value true
,
reducing the number of available permits by one.
If no permit is available then this method will return
immediately with the value false
.
Even when this semaphore has been set to use a
fair ordering policy, a call to tryAcquire()
will
immediately acquire a permit if one is available, whether or not
other threads are currently waiting.
This "barging" behavior can be useful in certain
circumstances, even though it breaks fairness. If you want to honor
the fairness setting, then use
tryAcquire(0, TimeUnit.SECONDS)
which is almost equivalent (it also detects interruption).
true
if a permit was acquired and false
otherwisepublic boolean tryAcquire(long timeout, TimeUnit unit) throws InterruptedException
Acquires a permit, if one is available and returns immediately,
with the value true
,
reducing the number of available permits by one.
If no permit is available then the current thread becomes disabled for thread scheduling purposes and lies dormant until one of three things happens:
release()
method for this
semaphore and the current thread is next to be assigned a permit; or
If a permit is acquired then the value true
is returned.
If the current thread:
InterruptedException
is thrown and the current thread's
interrupted status is cleared.
If the specified waiting time elapses then the value false
is returned. If the time is less than or equal to zero, the method
will not wait at all.
timeout
- the maximum time to wait for a permitunit
- the time unit of the timeout
argumenttrue
if a permit was acquired and false
if the waiting time elapsed before a permit was acquiredInterruptedException
- if the current thread is interruptedpublic void release()
Releases a permit, increasing the number of available permits by one. If any threads are trying to acquire a permit, then one is selected and given the permit that was just released. That thread is (re)enabled for thread scheduling purposes.
There is no requirement that a thread that releases a permit must
have acquired that permit by calling acquire()
.
Correct usage of a semaphore is established by programming convention
in the application.
public void acquire(int permits) throws InterruptedException
Acquires the given number of permits, if they are available, and returns immediately, reducing the number of available permits by the given amount.
If insufficient permits are available then the current thread becomes disabled for thread scheduling purposes and lies dormant until one of two things happens:
release
methods for this semaphore, the current thread is next to be assigned
permits and the number of available permits satisfies this request; or
If the current thread:
InterruptedException
is thrown and the current thread's
interrupted status is cleared.
Any permits that were to be assigned to this thread are instead
assigned to other threads trying to acquire permits, as if
permits had been made available by a call to release()
.permits
- the number of permits to acquireInterruptedException
- if the current thread is interruptedIllegalArgumentException
- if permits
is negativepublic void acquireUninterruptibly(int permits)
Acquires the given number of permits, if they are available, and returns immediately, reducing the number of available permits by the given amount.
If insufficient permits are available then the current thread becomes
disabled for thread scheduling purposes and lies dormant until
some other thread invokes one of the release
methods for this semaphore, the current thread is next to be assigned
permits and the number of available permits satisfies this request.
If the current thread is interrupted while waiting for permits then it will continue to wait and its position in the queue is not affected. When the thread does return from this method its interrupt status will be set.
permits
- the number of permits to acquireIllegalArgumentException
- if permits
is negativepublic boolean tryAcquire(int permits)
Acquires the given number of permits, if they are available, and
returns immediately, with the value true
,
reducing the number of available permits by the given amount.
If insufficient permits are available then this method will return
immediately with the value false
and the number of available
permits is unchanged.
Even when this semaphore has been set to use a fair ordering
policy, a call to tryAcquire
will
immediately acquire a permit if one is available, whether or
not other threads are currently waiting. This
"barging" behavior can be useful in certain
circumstances, even though it breaks fairness. If you want to
honor the fairness setting, then use tryAcquire(permits, 0, TimeUnit.SECONDS)
which is almost equivalent (it also detects interruption).
permits
- the number of permits to acquiretrue
if the permits were acquired and
false
otherwiseIllegalArgumentException
- if permits
is negativepublic boolean tryAcquire(int permits, long timeout, TimeUnit unit) throws InterruptedException
Acquires the given number of permits, if they are available and
returns immediately, with the value true
,
reducing the number of available permits by the given amount.
If insufficient permits are available then the current thread becomes disabled for thread scheduling purposes and lies dormant until one of three things happens:
release
methods for this semaphore, the current thread is next to be assigned
permits and the number of available permits satisfies this request; or
If the permits are acquired then the value true
is returned.
If the current thread:
InterruptedException
is thrown and the current thread's
interrupted status is cleared.
Any permits that were to be assigned to this thread, are instead
assigned to other threads trying to acquire permits, as if
the permits had been made available by a call to release()
.
If the specified waiting time elapses then the value false
is returned. If the time is less than or equal to zero, the method
will not wait at all. Any permits that were to be assigned to this
thread, are instead assigned to other threads trying to acquire
permits, as if the permits had been made available by a call to
release()
.
permits
- the number of permits to acquiretimeout
- the maximum time to wait for the permitsunit
- the time unit of the timeout
argumenttrue
if all permits were acquired and false
if the waiting time elapsed before all permits were acquiredInterruptedException
- if the current thread is interruptedIllegalArgumentException
- if permits
is negativepublic void release(int permits)
Releases the given number of permits, increasing the number of available permits by that amount. If any threads are trying to acquire permits, then one is selected and given the permits that were just released. If the number of available permits satisfies that thread's request then that thread is (re)enabled for thread scheduling purposes; otherwise the thread will wait until sufficient permits are available. If there are still permits available after this thread's request has been satisfied, then those permits are assigned in turn to other threads trying to acquire permits.
There is no requirement that a thread that releases a permit must
have acquired that permit by calling acquire
.
Correct usage of a semaphore is established by programming convention
in the application.
permits
- the number of permits to releaseIllegalArgumentException
- if permits
is negativepublic int availablePermits()
This method is typically used for debugging and testing purposes.
public int drainPermits()
protected void reducePermits(int reduction)
acquire
in that it does not block
waiting for permits to become available.reduction
- the number of permits to removeIllegalArgumentException
- if reduction
is negativepublic boolean isFair()
true
if this semaphore has fairness set true.true
if this semaphore has fairness set truepublic final boolean hasQueuedThreads()
true
return does not guarantee that any other thread will ever
acquire. This method is designed primarily for use in
monitoring of the system state.true
if there may be other threads waiting to
acquire the lockpublic final int getQueueLength()
protected Collection<Thread> getQueuedThreads()
Submit a bug or feature
For further API reference and developer documentation, see Java SE Documentation. That documentation contains more detailed, developer-targeted descriptions, with conceptual overviews, definitions of terms, workarounds, and working code examples.
Copyright © 1993, 2014, Oracle and/or its affiliates. All rights reserved.